Curves Defined by Parametric Equations

Imagine that a particle moves along the curve C shown in the following figure. It is impossible to describe C by an equation of the form $y=f(x)$ because C fails the Vertical Line Test.

Suppose that x - and y-coordinates are both given as functions of a third variable t (called a parameter) in an interval I by the equations

$$
x=f(t) \quad, \quad y=g(t), \quad \text { for } t \in I \quad(\text { called parametric equations on } I)
$$

then

- each value of t determines a point (x, y), which we can plot in a coordinate plane,
- as t varies, the point $(x, y)=(f(t), g(t))$ varies and traces out a curve

$$
C=\left\{(x, y) \in \mathbb{R}^{2} \mid x=f(t), y=g(t), t \in I\right\}
$$

which we call a parametric curve on I.
Example 1. Sketch and identify the curve defined by the parametric equations $x=t^{2}-2 t, y=$ $t+1$ for $t \in \mathbb{R}$. [Solution: Since $t=y-1$ and $x=(y-1)^{2}-2(y-1)=y^{2}-4 y+3$, the curve traced out by the particle is a parabola $x=(y-2)^{2}-1$.]
Example 2. Determine the curve represented by the following parametric equations $x=\cos t, y=$ $\sin t$ for $0 \leq t \leq 2 \pi$. [Solution: Since $x^{2}+y^{2}=1$, the curve determined by the parametric equations is the unit circle $x^{2}+y^{2}=1$.]
Example 3. Use a calculator or computer to graph the curve $x=y^{4}-3 y^{2}$ [Hint: If $y=t$ then we can draw the curve determined by the parametric equations $x=t^{4}-3 t^{2}, y=t$ for $t \in \mathbb{R}$.]

Example 4. The curve traced out by a point P on the circumference of a circle as the circle rolls along a straight line is called a cycloid.
If the circle has radius r and rolls along the x-axis and if one position of P is the origin, find parametric equations for the cycloid.

We choose as parameter the angle of rotation θ of the circle $(\theta=0$ when P is at the origin). Suppose the circle has rotated through θ radians.

Because the circle has been in contact with the line, we see from the above figure that the distance it has rolled from the origin is

$$
|O T|=\text { length of } \operatorname{arc} \widehat{P T}=r \theta
$$

Therefore the center of the circle is $C(r \theta, r)$. Let the coordinates of P be (x, y). Then from the above figure we see that

$$
\begin{gathered}
x=x(\theta)=|O T|-|P Q|=r \theta-r \sin \theta=r(\theta-\sin \theta) \\
y=y(\theta)=|T C|-|Q C|=r-r \cos \theta=r(1-\cos \theta)
\end{gathered}
$$

Therefore parametric equations of the cycloid are

$$
C: \quad x=r(\theta-\sin \theta), \quad y=r(1-\cos \theta), \quad \theta \in \mathbb{R}
$$

Calculus with Parametric Curves

Tangents

Suppose f and g are differentiable functions and we want to find the tangent line at a point on the parametric curve $x=f(t), y=g(t)$, where y is also a differentiable function of x.
Since the Chain Rule gives $\frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}$, we obtain the following conclusions.

- If $\frac{d x}{d t} \neq 0$, then
(i) $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$,
(ii) $\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d t}\left(\frac{d y}{d x}\right) \cdot \frac{d t}{d x}=\frac{d}{d t}\left(\frac{d y / d t}{d x / d t}\right) \cdot \frac{1}{d x / d t}=\frac{d^{2} y / d t^{2}}{(d x / d t)^{2}}-\frac{(d y / d t)\left(d^{2} x / d t^{2}\right)}{(d x / d t)^{3}}$.
- The curve has a horizontal tangent at the point where $\frac{d y}{d t}=0$ and $\frac{d x}{d t} \neq 0$.
- The curve has a vertical tangent at the point where $\frac{d x}{d t}=0$ and $\frac{d y}{d t} \neq 0$.
- Other methods needed to determine the slope of the tangent if both $\frac{d x}{d t}=0$ and $\frac{d y}{d t}=0$.

Example Let C be a curve defined by the parametric equations $x=t^{2}, y=t^{3}-3 t$ for $t \in \mathbb{R}$.
(a) Show that C has two tangents at the point $(3,0)$ and find their equations.
[Solution: Note that $x=3$ for $t= \pm \sqrt{3}$ and, in both cases, $y=t\left(t^{2}-3\right)=0$. Therefore the point $(3,0)$ on C arises from two values of the parameter, $t= \pm \sqrt{3}$. This indicates that C crosses itself at $(3,0)$.
Since $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{3 t^{2}-3}{2 t}$, the slope of the tangents are $d y / d x= \pm \sqrt{3}$ when $t= \pm \sqrt{3}$, respectively. Thus we have two different tangent lines at (3,0) with equations $y= \pm \sqrt{3}(x-$ 3).]
(b) Find the points on C where the tangent is horizontal or vertical. [Solution: Since $d y / d t=$ $3 t^{2}-3=0$ and $d x / d t=2 t \neq 0$ when $t= \pm 1, C$ has a horizontal tangent at $(1, \mp 2)$. Since $d x / d t=2 t=0$ and $d y / d t=3 t^{2}-3 \neq 0$ when $t=0, C$ has a vertical tangent at $\left.(0,0).\right]$
(c) Determine where the curve is concave upward or downward. [Solution: Since $\frac{d^{2} y}{d x^{2}}=\frac{3 t^{2}+3}{4 t^{3}}$, C is concave upward when $t>0$ and concave downward when $t<0$.]
(d) Sketch the curve. Using the information from parts (b) and (c), we sketch C as follows

Areas

Recall that the area under a differentiable curve $y=F(x) \geq 0$ from a to b is given by

$$
A=\int_{a}^{b} F(x) d x
$$

Suppose that

$$
\begin{aligned}
C & =\{(x, y) \mid y=F(x) \geq 0, x \in[a, b]\} \\
& =\{(x, y) \mid x=f(t), y=g(t) \geq 0 \text { and } f:[\alpha, \beta] \rightarrow[a, b] \text { is } 1-1 \text { and onto }\}
\end{aligned}
$$

i.e. C is traced out once by the parametric equations $x=f(t)$ and $y=g(t) \geq 0$ for $t \in[\alpha, \beta]$ Then by using the substitution we can calculate the area as follows:

$$
\begin{aligned}
A=\int_{a}^{b} y d x & =\int_{\alpha}^{\beta} g(t) f^{\prime}(t) d t \quad \text { if } f^{\prime}(t)>0, t \in[\alpha, \beta] \\
& \text { or } \quad \int_{\beta}^{\alpha} g(t) f^{\prime}(t) d t \quad \text { if } f^{\prime}(t)<0, t \in[\alpha, \beta] .
\end{aligned}
$$

Example Find the area under one arch of the cycloid $x=r(\theta-\sin \theta), y=r(1-\cos \theta)$ for $\theta \in \mathbb{R}$.

[Solution: Using the Substitution Rule with $y=r(1-\cos \theta)$ and $d x=r(1-\cos \theta) d \theta$, we have $A=\int_{0}^{2 \pi r} y d x=r^{2} \int_{0}^{2 \pi}(1-\cos \theta)^{2} d \theta=3 \pi r^{2}$.]

Arc Length

Recall that if the curve C is defined by $y=F(x)$, for $a \leq x \leq b$, and if $F^{\prime}(x)$ is continuous on [a, b], then the length L of C is given by

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

Suppose that

$$
\begin{aligned}
C & =\{(x, y) \mid y=F(x), x \in[a, b]\} \\
& =\left\{(x, y) \mid x=f(t), y=g(t), f:[\alpha, \beta] \rightarrow[a, b] \text { is } 1-1, \text { onto with } \frac{d x}{d t}=f^{\prime}(t)>0 \text { for } t \in[\alpha, \beta]\right\}
\end{aligned}
$$

i.e. $\quad C$ is traversed once, from $x=a$ to $x=b$ as t increases from α to β and $f(\alpha)=a, f(\beta)=b$

Then we can calculate a length by using the substitution rule as follows:

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{\alpha}^{\beta} \sqrt{1+\left(\frac{d y / d t}{d x / d t}\right)^{2}} \frac{d x}{d t} d t=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Theorem Suppose that

- C is described by the parametric equations $x=f(t), y=g(t), \alpha \leq t \leq \beta$,
- $\frac{d x}{d t}=f^{\prime}(t)$ and $\frac{d y}{d t}=g^{\prime}(t)$ are continuous for $t \in[\alpha, \beta]$,
- C is traversed exactly once as t increases from α to β.

Then the length of C is

$$
L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{\alpha}^{\beta} d s, \quad \text { where } d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Example Find the length of one arch of the cycloid $x=r(\theta-\sin \theta), y=r(1-\cos \theta)$ for $\theta \in \mathbb{R}$.
[Solution: $L=r \int_{0}^{2 \pi} \sqrt{2(1-\cos \theta)} d \theta=r \int_{0}^{2 \pi} \sqrt{4 \sin ^{2}\left(\frac{\theta}{2}\right)} d \theta=2 r \int_{0}^{2 \pi} \sin \left(\frac{\theta}{2}\right) d \theta=8 r$.]

Definition

- Let f, g be continuously differentiable functions defined on I,
- let C be a parametric curve defined by $x=f(t), y=g(t)$ for $t \in I$
- let $s(t)$ be the arc length along C from an initial point $(f(\alpha), g(\alpha))$ to a point $(f(t), g(t))$ on C.

Then the arc length function s for parametric curves is defined by

$$
s(t)=\int_{\alpha}^{t} \sqrt{\left(\frac{d x}{d u}\right)^{2}+\left(\frac{d y}{d u}\right)^{2}} d u
$$

Note that if parametric equations describe the position of a moving particle (with t representing time), then the speed of the particle at time t, is

$$
v(t)=s^{\prime}(t)=\frac{d}{d t} \int_{\alpha}^{t} \sqrt{\left(\frac{d x}{d u}\right)^{2}+\left(\frac{d y}{d u}\right)^{2}} d u=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}
$$

by the Fundamental Theorem of Calculus.

Surface Area

Suppose a curve C is given by the parametric equations $x=f(t), y=g(t), \alpha \leq t \leq \beta$, where f^{\prime} and g^{\prime} are continuous on $[\alpha, \beta], g(t) \geq 0$, and C is traversed exactly once as t increases from α to β. If C is rotated about the x-axis, then the area $A(S)$ of the resulting surface S is given by

$$
A(S)=\int_{\alpha}^{\beta} 2 \pi y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{\alpha}^{\beta} 2 \pi y d s
$$

Example Show that the surface area of a sphere of radius r is $4 \pi r^{2}$.
[Solution: The sphere S is obtained by rotating the semicircle $x=r \cos t, y=r \sin t, 0 \leq t \leq \pi$, about the x-axis. Therefore, we get $A(S)=\int_{0}^{\pi} 2 \pi r \sin t \sqrt{(-r \sin t)^{2}+(r \cos t)^{2}} d t=4 \pi r^{2}$.]

Polar Coordinates

In two dimensions, the Cartesian coordinates (x, y) specify the location of a point P in the plane. Another two-dimensional coordinate system is polar coordinates. Instead of using the signed distances along the two coordinate axes, polar coordinates (r, θ) specifies the location of a point P in the plane by its distance r from the origin O and the angle θ made between the positive x-axis and the line segment $O P$.

Remarks

- We use the convention that an angle is positive if measured in the counterclockwise direction from the polar axis and negative in the clockwise direction.
- Note that if $P=O$, then $r=0$ and we agree that $(0, \theta)$ represents the origin (or pole) for any value of θ.
- We extend the meaning of polar coordinates (r, θ) to the case in which r is negative by agreeing that the points $(-r, \theta)$ and (r, θ) lie on the same line through O and at the same distance r from O, but on opposite sides of O.
Note that if $r>0$, the point (r, θ) lies in the same quadrant as θ; if $r<0$, it lies in the quadrant on the opposite side of the origin. So, $(-r, \theta)$ represents the same point as $(r, \theta+\pi)$. In fact, $(r, \theta),(r, \theta+2 n \pi)$ or $(-r, \theta+(2 n+1) \pi)$ represents the same point for any integer n.
- Use the following to find Cartesian coordinates $P(x, y)$ when polar coordinates $P(r, \theta)$ are given

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

and use the following to find polar coordinates $P(r, \theta)$ when Cartesian coordinates $P(x, y)$ are given

$$
r^{2}=x^{2}+y^{2}, \quad \tan \theta=\frac{y}{x} \quad \text { provided that } x \neq 0
$$

Note that if $x \neq 0$, since $-\frac{\pi}{2}<\theta=\tan ^{-1}\left(\frac{y}{x}\right)<\frac{\pi}{2}$, and $\tan \theta$ is a periodic function with period equals to π, i.e. $\tan (\theta+\pi)=\tan \theta$, we must choose between θ and $\theta+\pi$ so that the point (r, θ) lies in the correct quadrant.

Examples

1. Plot the points whose polar coordinates are given.
(a) $\left(1, \frac{5 \pi}{4}\right)$
(b) $(2,3 \pi)$
(c) $\left(2, \frac{-2 \pi}{3}\right)$
(d) $\left(-3, \frac{3 \pi}{4}\right)$
2. Convert the point $\left(2, \frac{\pi}{3}\right)$ from polar to Cartesian coordinates. [Solution: $(1, \sqrt{3})$.]

3. Represent the point with Cartesian coordinates $(1,-1)$ in terms of polar coordinates.
[Solution: $\left(\sqrt{2}, \frac{-\pi}{4}\right)$ or $\left(\sqrt{2}, \frac{7 \pi}{4}\right)$]
Definition The graph of a polar equation $r=f(\theta)$, or more generally $F(r, \theta)=0$, is a set of all points $P(r, \theta)$ satisfying the equation. For example, the graph of $r=f(\theta), \theta \in$ domain of f is the set $\{(r, \theta) \mid r=f(\theta), \theta \in$ domain of $f\}$.

Examples

1. What curve is represented by the polar equation $r=2$?
[Solution: A circle with center O and radius 2.]
2. Sketch the curve $r=1+\sin \theta$. [Solution: A cardioid. Note that $\sin (\pi-\theta)=\sin \theta$, the cardioid $r=1+\sin \theta$ is symmetric about y-axis.]

3. Sketch (a) the ray (or line) $\theta=1,(b)$ the circle $r=2 \cos \theta$ and (c) the four-leaved rose $r=\cos 2 \theta$. [Note that $\cos (-2 \theta)=\cos (2 \theta)$, the four-leaved rose $r=\cos 2 \theta$ is symmetric about x-axis.]

Calculus in Polar Coordinates

Area To develop the formula for the area of a region whose boundary is given by a polar equation, we need to use the formula for the area of a sector of a circle $A=\frac{1}{2} r \theta$, where r is the radius and θ is the radian measure of the central angle.
Let \mathscr{R} be the region bounded by the polar curve $r=f(\theta)$ and by the rays $\theta=a$ and $\theta=b$, where f is a positive continuous function and where $0<b-a \leq 2 \pi$.
We divide the interval $[a, b]$ into subintervals with endpoints $\theta_{0}, \theta_{1}, \theta_{2}, \ldots, \theta_{n}$ and equal width

$\Delta \theta$. Then the total area A of \mathscr{R} is given by

$$
A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{2}\left[f\left(\theta_{i}^{*}\right)\right]^{2} \Delta \theta=\int_{a}^{b} \frac{1}{2}[f(\theta)]^{2} d \theta
$$

Example Find the area enclosed by one loop of the four-leaved rose $r=\cos 2 \theta$.
[Solution: $A=\int_{-\pi / 4}^{\pi / 4} \frac{1}{2} \cos ^{2} 2 \theta d \theta=\int_{0}^{\pi / 4} \cos ^{2} 2 \theta d \theta==\int_{0}^{\pi / 4} \frac{1+\cos 4 \theta}{2} d \theta=\frac{\pi}{8}$.]
Arc Length and Tangents Let $f(\theta)$ be a continuously differentiable function for $\theta \in[a, b]$ and let C be the polar curve defined by $r=f(\theta), a \leq \theta \leq b$. Since

$$
\begin{aligned}
& x=r \cos \theta=f(\theta) \cos \theta \quad \text { and } \quad y=r \sin \theta=f(\theta) \sin \theta \\
\Longrightarrow \quad & \frac{d x}{d \theta}=\frac{d r}{d \theta} \cos \theta-r \sin \theta \quad \text { and } \quad \frac{d y}{d \theta}=\frac{d r}{d \theta} \sin \theta+r \cos \theta
\end{aligned}
$$

and using $\cos ^{2} \theta+\sin ^{2} \theta=1$, we have

$$
\begin{aligned}
\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2} & =\left(\frac{d r}{d \theta}\right)^{2} \cos ^{2} \theta-2 r \frac{d r}{d \theta} \cos \theta \sin \theta+r^{2} \sin ^{2} \theta \\
& +\left(\frac{d r}{d \theta}\right)^{2} \sin ^{2} \theta+2 r \frac{d r}{d \theta} \sin \theta \cos \theta+r^{2} \cos ^{2} \theta \\
& =\left(\frac{d r}{d \theta}\right)^{2}+r^{2}
\end{aligned}
$$

Thus the length L of a curve C with polar equation $r=f(\theta), a \leq \theta \leq b$, is

$$
L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta=\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
$$

Examples

1. Find the length of the cardioid $r=1+\sin \theta$.
[Solution: Since $r=1+\sin \theta$ is symmetric about y-axis, $L=\int_{0}^{2 \pi} \sqrt{2+2 \sin \theta} d \theta=$ $\int_{-\pi / 2}^{\pi / 2} \frac{\sqrt{2} \cos \theta}{\sqrt{1-\sin \theta}} d \theta-\int_{\pi / 2}^{3 \pi / 2} \frac{\sqrt{2} \cos \theta}{\sqrt{1-\sin \theta}} d \theta=\int_{-\pi / 2}^{\pi / 2} \frac{2 \sqrt{2} \cos \theta}{\sqrt{1-\sin \theta}} d \theta=-\left.4 \sqrt{2} \sqrt{1-\sin \theta}\right|_{-\pi / 2} ^{\pi / 2}=$ 8.]
2. For the cardioid $r=1+\sin \theta$, find the slope of the tangent line when $\theta=\frac{\pi}{3}$.
[Solution: $\left.\left.\frac{d y}{d x}\right|_{\theta=\pi / 3}=\left.\frac{d y / d \theta}{d x / d \theta}\right|_{\theta=\pi / 3}=-1.\right]$
3. Find the points on the cardioid where the tangent line is horizontal or vertical.
[Solution: Since $y=r \sin \theta=\sin \theta+\sin ^{2} \theta, x=r \cos \theta=\cos \theta+\frac{1}{2} \sin 2 \theta, \frac{d y}{d \theta}=\cos \theta+$ $\sin 2 \theta=\cos \theta(1+2 \sin \theta)=0$ when $\theta=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$, and $\frac{d x}{d \theta}=-\sin \theta+\cos 2 \theta=$ $(1+\sin \theta)(1-2 \sin \theta)=0$ when $\theta=\frac{3 \pi}{2}, \frac{\pi}{6}, \frac{5 \pi}{6}$, there are horizontal tangents at the points $(r, \theta)=\left(2, \frac{\pi}{2}\right),\left(\frac{1}{2}, \frac{7 \pi}{6}\right),\left(\frac{1}{2}, \frac{11 \pi}{6}\right)$ and vertical tangents at $(r, \theta)=\left(\frac{3}{2}, \frac{\pi}{6}\right)$ and $\left.\left(\frac{3}{2}, \frac{5 \pi}{6}\right).\right]$

4. Sketch the graph of $r=3 \cos (3 \theta)$.

Since $r=3 \cos (3 \theta)=3 \cos (-3 \theta)$, the graph is symmetric about x-axis, it suffices to sketch the graph of $r=3 \cos (3 \theta)$ for $\theta \in[0, \pi]$. Also note that if $r>0$, then $(-r, \theta)=(r, \theta+\pi)$. Since

	$(0, \pi / 6)$	$(\pi / 6, \pi / 2)$	$(\pi / 2,5 \pi / 6)$	$(5 \pi / 6, \pi)$
$r=3 \cos (3 \theta)$	>0	<0	>0	<0

the graph of $r=3 \cos (3 \theta)$ is drawn in blue color for $\theta \in(\pi / 6, \pi / 2) \cup(5 \pi / 6, \pi)$.

